skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Schneider, Donald P"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Broad absorption line (BAL) quasars are often considered X-ray weak relative to their optical/UV luminosity, whether intrinsically (i.e. the coronal emission is fainter) or due to large column densities of absorbing material. The SDSS-V is providing optical spectroscopy for samples of quasar candidates identified by eROSITA as well as Chandra, XMM, or Swift, making the resulting data sets ideal for characterizing the BAL quasar population within an X-ray selected sample. We use the Balnicity Index (BI) to identify the BAL quasars based on absorption of the C iv$$\lambda \, 1549$$ emission line in the optical spectra, finding 143 BAL quasars in our sample of 2317 X-ray selected quasars within $$1.5\le z \le 3.5$$. This observed BAL fraction of $$\approx$$ 6 per cent is comparable to that found in optically selected samples. We also identify absorption systems via the Absorption Index (AI) which includes mini-BALs and NALs, finding 954 quasars with AI $>0$. We consider the C iv emission space (equivalent width versus blueshift) to study the BAL outflows within the context of the radiatively driven accretion disc–wind model. X-ray selection excludes the highest outflow velocities in emission but includes the full range of absorption velocities which we suggest is consistent with the BAL gas being located further from the X-ray corona than the emitting gas. We observe both X-ray weak and X-ray strong BALs (via the optical-to-X-ray spectral slope, $$\alpha _\text{ox}$$) and detect little evidence for differing column densities between the BAL and non-BAL quasars, suggesting the BALs and non-BALs have the same shielding gas and intrinsic X-ray emission. 
    more » « less
  2. Abstract We are merging a large participatory science effort with machine learning to enhance the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX). Our overall goal is to remove false positives, allowing us to use lower signal-to-noise data and sources with low goodness-of-fit. With six million classifications through Dark Energy Explorers, we can confidently determine if a source is not real at over 94% confidence level when classified by at least 10 individuals; this confidence level increases for higher signal-to-noise sources. To date, we have only been able to apply this direct analysis to 190,000 sources. The full sample of HETDEX will contain around 2–3 million sources, including nearby galaxies ([Oii] emitters), distant galaxies (Lyαemitters or LAEs), false positives, and contamination from instrument issues. We can accommodate this tenfold increase by using machine learning with visually vetted samples from Dark Energy Explorers. We have already increased by over tenfold the number of sources that have been visually vetted from our previous pilot study where we only had 14,000 visually vetted LAE candidates. This paper expands on the previous work by increasing the visually vetted sample from 14,000 to 190,000. In addition, using our currently visually vetted sample, we generate a real or false positive classification for the full candidate sample of 1.2 million LAEs. We currently have approximately 17,000 volunteers from 159 countries around the world. Thus, we are applying participatory or citizen scientist analysis to our full HETDEX data set, creating a free educational opportunity that requires no prior technical knowledge. 
    more » « less
  3. Abstract Over three decades of reverberation mapping (RM) studies on local broad-line active galactic nuclei (AGNs) have measured reliable black hole (BH) masses for >100 AGNs. These RM measurements reveal a significant correlation between the Balmer broad-line region (BLR) size and AGN optical luminosity (theR–Lrelation). Recent RM studies for AGN samples with more diverse BH parameters (e.g., mass and Eddington ratio) reveal a substantial intrinsic dispersion around the averageR–Lrelation, suggesting that variations in the broadband spectrum, driven by accretion parameters and other factors such as the cloud distribution and inclination, significantly influence the measuredR–Lrelation. Here we perform a detailed photoionization investigation of expected broad-line properties as functions of accretion parameters using AGN continuum models fromqsosed. We compare theoretical predictions with observations of a sample of 67z ≲ 0.5 reverberation-mapped AGNs with rest-frame optical and UV spectra in the moderate-accretion regime (Eddington ratioλEdd ≡ L/LEdd < 0.5). The UV/optical line strengths and their dependences on accretion parameters are reasonably well reproduced by the locally optimally emitting cloud photoionization models. We provide quantitative recipes using optical/UV line flux ratios to infer the unobservable ionizing continuum. Additionally, photoionization models with universal values of ionization parameter ( log U H = 2 ) and hydrogen density ( log n ( H ) = 12 ) can qualitatively reproduce the observed globalR–Lrelation for the current RM AGN sample. However, such models fail to reproduce the observed decrease in BLR size with increasingL/LEddat fixed optical luminosity, implying that gas density or BLR structure may systematically change with accretion rate. 
    more » « less
  4. Abstract We present dynamical modeling of the broad-line region (BLR) of the highly variable active galactic nucleus (AGN) SDSS J141041.25+531849.0 (z= 0.359) using photometric and spectroscopic monitoring data from the Sloan Digital Sky Survey (SDSS) Reverberation Mapping project and the current fifth-generation SDSS Black Hole Mapper program, spanning from early 2013 to early 2023. We model the geometry and kinematics of the BLR in the Hβ, Hα, and Mgiiemission lines for three different time periods to measure the potential change of structure within the BLR across time and line species. We find a moderately face-on ( i full - state = 29 . 68 3.62 + 4.74 deg ) thick-disk ( θ opn , full state = 42 . 04 3.96 + 4.32 deg ) geometry for most BLRs, with a joint estimate for the mass of the supermassive black hole for each of three time periods, yielding log 10 ( M BH / M ) = 8.1 0 0.03 + 0.03 when using the full data set. The inferred individual virial factorf∼ 1.6 is moderately smaller than the average factor for a local sample of dynamically modeled AGNs. There is strong evidence for nonvirial motion, with over 70% of clouds on inflowing/outflowing orbits. We analyze the change in model parameters across emission lines, finding the radii of BLRs for the emission lines are consistent with the following relative sizesR ≲ RMgII ≲ R. Comparing results across time, we findRlow-state ≲ Rhigh-state, with the change in BLR size for Hβbeing more significant than for the other two lines. The data also reveal complex, time-evolving, and potentially transient dynamics of the BLR gas over a decade-long timescale, encouraging for future dynamical modeling of fine-scale BLR kinematics. 
    more » « less
  5. Abstract We present measurements ofz ∼ 2.4 ultraviolet (UV) background light using Lyαabsorption from galaxies atz ∼ 2–3 in the Hobby–Eberly Telescope Dark Energy Experiment (HETDEX) database. Thanks to the wide area of this survey, we also measure the variability of this light across the sky. The data suggest an asymmetric geometry where integrated UV light from background galaxies is absorbed by Hiwithin the halo of a foreground galaxy, in a configuration similar to damped Lyαsystems. Using stacking analyses of over 400,000 HETDEX LAE spectra, we argue that this background absorption is detectable in our data. We also argue that the absorption signal becomes negative due to HETDEX’s sky-subtraction procedure. The amount that the absorption is oversubtracted is representative of thez ∼ 2.4 UV contribution to the overall extragalactic background light (EBL) at Lyα. Using this method, we determine an average intensity (inνJνunits) of 12.9 ± 3.7 nW m−2sr−1at a median observed wavelength of 4134 Å, or a rest-frame UV background intensity of 508 ± 145 nW m−2sr−1atz ∼ 2.4. We find that this flux varies significantly depending on the density of galaxies in the field of observation. Our estimates are consistent with direct measurements of the overall EBL. 
    more » « less
  6. Abstract We present the rest-frame ultraviolet−optical spectral properties of 65 broad absorption line (BAL) quasars from the Gemini Near Infrared Spectrograph−Distant Quasar Survey (GNIRS-DQS). These properties are compared with those of 195 non-BAL quasars from GNIRS-DQS in order to identify the drivers for the appearance of BALs in quasar spectra. In particular, we compare equivalent widths and velocity widths, as well as velocity offsets from systemic redshifts, of principal emission lines. In spite of the differences between their rest-frame ultraviolet spectra, we find that luminous BAL quasars are generally indistinguishable from their non-BAL counterparts in the rest-frame optical band at redshifts 1.55 ≲z≲ 3.50. We do not find any correlation between BAL trough properties and the Hβ-based supermassive black hole masses and normalized accretion rates in our sample. Considering the Sloan Digital Sky Survey quasar sample, which includes the GNIRS-DQS sample, we find that a monochromatic luminosity at rest-frame 2500 Å of ≳1045erg s−1is a necessary condition for launching BAL outflows in quasars. We compare our findings with other BAL quasar samples and discuss the roles that accretion rate and orientation play in the appearance of BAL troughs in quasar spectra. 
    more » « less
  7. Abstract We explore reprocessing models for a sample of 17 hypervariable quasars, taken from the Sloan Digital Sky Survey Reverberation Mapping project, which all show coordinated optical luminosity hypervariability with amplitudes of factors ≳2 between 2014 and 2020. We develop and apply reprocessing models for quasar light curves in simple geometries that are likely to be representative of quasar inner environments. In addition to the commonly investigated thin-disk model, we include the thick-disk and hemisphere geometries. The thick-disk geometry could, for instance, represent a magnetically elevated disk, whereas the hemisphere model can be interpreted as a first-order approximation for any optically thick out-of-plane material caused by outflows/winds, warped/tilted disks, and so on. Of the 17 quasars in our sample, 11 are best-fitted by a hemisphere geometry, five are classified as thick disks, and both models fail for just one object. We highlight the successes and shortcomings of our thermal reprocessing models in case studies of four quasars that are representative of the sample. While reprocessing is unlikely to explain all of the variability that we observe in quasars, we present our classification scheme as a starting point for revealing the likely geometries of reprocessing for quasars in our sample and hypervariable quasars in general. 
    more » « less
  8. Abstract Investigating the impact of galaxy properties on emergent Lyαemission is crucial for reionization studies, given the sensitivity of Lyαto neutral hydrogen. This study presents an analysis of the physical characteristics of 155 star-forming galaxies, 29 with Lyαdetected, and 126 with Lyαnot detected with LyαEW < 20 Å, atz= 1.9–3.5, drawn from the MOSFIRE Deep Evolution Field survey, that have overlapping observations from the Hobby–Eberly Telescope Dark Energy Experiment survey. To unravel the interstellar medium (ISM) conditions in our sample, we developed a custom nebular line modeling algorithm based on the MAPPINGS V photoionization model grid and theemceeframework. Combining nebular-based ISM properties with photometry-based global properties, constrained viaBagpipes, we explore distinctions in the stellar and gas properties between Lyα-detected and Lyα-nondetected galaxies. Our analysis reveals statistically significant differences between the two samples in terms of stellar mass and dust attenuation (AV) at >2σsignificance, as determined via a Kolmogorov–Smirnov test. Moreover, there are weaker (≲1σsignificance) indications that the ionization parameter and metallicity differ between the two samples. Our results demonstrate that the escape fraction of Lyα( f esc Ly α ) is inversely correlated with stellar mass, star formation rate, and dust attenuation, while it is positively correlated with the ionization parameter, with significance levels exceeding 2σ. Our findings suggest that the interstellar environments of Lyα-detected galaxies, characterized by low mass, low dust, low gas-phase metallicity, and high ionization parameters, play a pivotal role in promoting the escape of Lyαradiation. 
    more » « less
  9. Abstract We measure the correlation between black hole massMBHand host stellar massM*for a sample of 38 broad-line quasars at 0.2 ≲z≲ 0.8 (median redshiftzmed= 0.5). The black hole masses are derived from a dedicated reverberation mapping program for distant quasars, and the stellar masses are derived from two-band optical+IR Hubble Space Telescope imaging. Most of these quasars are well centered within ≲1 kpc from the host galaxy centroid, with only a few cases in merging/disturbed systems showing larger spatial offsets. Our sample spans two orders of magnitude in stellar mass (∼109–1011M) and black hole mass (∼107–109M) and reveals a significant correlation between the two quantities. We find a best-fit intrinsic (i.e., selection effects corrected)MBH–M*,hostrelation of log ( M BH / M ) = 7.01 0.33 + 0.23 + 1.74 0.64 + 0.64 log ( M * , host / 10 10 M ) , with an intrinsic scatter of 0.47 0.17 + 0.24 dex. Decomposing our quasar hosts into bulges and disks, there is a similarMBH–M*,bulgerelation with slightly larger scatter, likely caused by systematic uncertainties in the bulge–disk decomposition. TheMBH–M*,hostrelation atzmed= 0.5 is similar to that in local quiescent galaxies, with negligible evolution over the redshift range probed by our sample. With direct black hole masses from reverberation mapping and the large dynamical range of the sample, selection biases do not appear to affect our conclusions significantly. Our results, along with other samples in the literature, suggest that the locally measured black hole mass–host stellar mass relation is already in place atz∼ 1. 
    more » « less
  10. We present a velocity-resolved reverberation mapping analysis of the hypervariable quasar RM160 (SDSS J141041.25+531849.0) atz= 0.359 with 153 spectroscopic epochs of data representing a 10 yr baseline (2013–2023). We split the baseline into two regimes based on the 3× flux increase in the light curve: a “low state” phase during the years 2013–2019 and a “high state” phase during the years 2022–2023. The velocity-resolved lag profiles (VRLPs) indicate that gas with different kinematics dominates the line emission in different states. The HβVRLP begins with a signature of inflow onto the broad-line region (BLR) in the low state, while in the high state it is flatter with less signature of inflow. The HαVRLP begins consistent with a virialized BLR in the low state, while in the high state shows a signature of inflow. The differences in the kinematics between the Balmer lines and between the low state and the high state suggests complex BLR dynamics. We find that the BLR radius and velocity (both FWHM andσ) do not obey a constant virial product throughout the monitoring period. We find that the BLR lags and continuum luminosity are correlated, consistent with rapid response of the BLR gas to the illuminating continuum. The BLR kinematic profile changes in unpredictable ways that are not related to continuum changes and reverberation lag. Our observations indicate that nonvirial kinematics can significantly contribute to observed line profiles, suggesting caution for black hole mass estimation in luminous and highly varying quasars like RM160. 
    more » « less